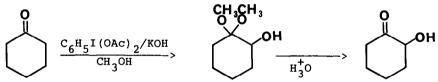
A FAVORSKI REACTION USING IODOSOBENZENE

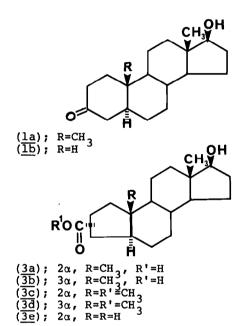

Sol J. Daum

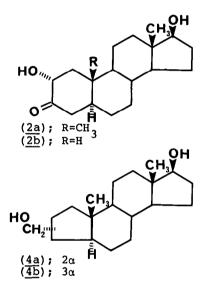
Department of Medicinal Chemistry, Sterling-Winthrop Research Institute, Rensselaer, New York

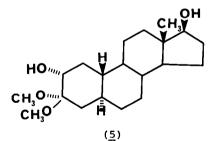
<u>Abstract</u>. Iodosobenzene or iodobenzene diacetate and excess base when reacted with 17β -hydroxy- 5α -androstane-3-one (<u>la</u>) unexpectedly gave a good yield of Favorski acid (<u>3a</u>) and some (<u>3b</u>). 17β -hydroxy- 5α -19-norandrostan-3-one (<u>lb</u>) gave mainly the expected dimethylketal of the 2α -hydroxy-3-keto steroid (<u>5</u>).

We found it necessary to prepare steroidal 2-hydroxy-3-ketones, and to that end, a method described recently^{1,2,3}, employing iodosobenzene $(C_6H_5I=0)^4$ as a means of generating α -hydroxy ketones was attempted.

In a typical experiment, the authors describe the reaction of an α -methylene or α -methyl ketone with either $C_{6}H_{5}I=0$ and an equivalent of base (OH⁻) in MeOH or iodobenzene diacetate $[C_{6}H_{5}I(OAc)_{2}]$ and at least 3 equivalents of base (OH⁻) in MeOH, followed by an acid work up, to afford an α -hydroxyketone. An example cited is the conversion of cyclohexanone to α -hydroxycyclohexanone (80% yield).¹

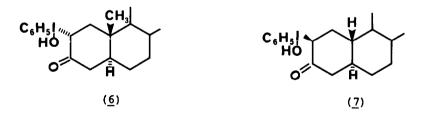



17β-hydroxy-5α-androstan-3-one (<u>la</u>) when treated with an excess of KOH and an equivalent of $C_{6}H_{5}I(OAc)_{2}$ in MeOH at R.T. overnight, followed by an acid (3N HCl) work up afforded a mixture of the known acids (<u>3a</u>)⁵ and (<u>3b</u>)⁶ (tlc) and not the desired (<u>2a</u>). Direct recrystallization of the crude product from MeOH afforded a 65% yield of (<u>3a</u>)⁷, mp 270-272°; M⁺ 306; C¹³mr(DMSOd₆) & 177.9 ppm (<u>C</u>OOH); ir (KBr) 1693 cm⁻¹, (Lit.⁵ mp 263-268°⁸).


Reduction of (<u>3a</u>) with BH_3/THF affords the known 2a-hydroxymethyl compound (<u>4a</u>).^{5,7}; mp 155-156° (MeOH), M⁺ 292; ir (no carbonyl); nmr (DMSOd₆) δ 3.2 (m, 1H, CHOH), 3.4 ppm (m, 2H, CH₂OH), (Lit.⁵ mp 148-155°⁹).

4726

Reduction of (<u>3a</u>) mother liquor with BH_3/THF afforded after preparative HPLC separation 12% more of (<u>4a</u>) and 12% of the 3 α -hydroxymethyl compound (<u>4b</u>);^{6,7} mp 199-200° (MeOH); M⁺ 292; ir (no carbonyl); nmr (DMSOd₆) δ 3.2 (m, 2H, CH₂OH) 3.4 ppm (m, 1H, CHOH). The assignment of 3 α -hydroxymethyl for (<u>4b</u>) is based upon the expected Favorski products.⁶



When 17β -hydroxy-5 α -androstan-3-one (<u>1a</u>) was treated with $C_6H_5I=0$ and one equivalent of KOH in MeOH overnight at R.T., work up after acidification afforded a mixture of mostly 2α -ester (<u>3c</u>)¹⁰ and some 3α -ester (<u>3d</u>) (t1c); ir (CCl₄) 1732 cm⁻¹; MH⁺ 321; [Lit.¹⁰ ir (KBr) 1730 cm⁻¹]. Reduction of (<u>3c</u>) and (<u>3d</u>) with Ca/NH₃ afforded after work up and preparative

Reduction of $(\underline{3c})$ and $(\underline{3d})$ with Ca/NH₃ afforded after work up and preparative HPLC 83% and 17% yields respectively of hydroxymethyl compounds ($\underline{4a}$) and ($\underline{4b}$). When 17 β -hydroxy-5 α -19-norandrostan-3-one ($\underline{1b}$) was treated with an excess of KOH and an equivalent of C₆H₅I(OAC)₂ in MeOH at R.T. overnight, work up afforded from the organic layer before acidification a 40% yield of the 2 α -hydroxy-3,3-dimethoxyketal ($\underline{5}$)⁷; mp 129-131° (Et₂O-Hexane); M⁺ 338; nmr (CDCl₃) δ 3.5-3.8 (m, 2H, C<u>H</u>OH), 3.4 and 3.3 ppm (d, 6H C<u>H₃O</u>). Acidification of the alkaline layer (3N HCl) gave after recrystallization an 18% yield of the Favorski acid ($\underline{3e}$)⁷; mp 194-195 (Et₂O-Hexane); M⁺ 292; C¹³mr (CDCl₃ δ 178 ppm (<u>C</u>OOH).

Compound (<u>5</u>) after stirring with Dowex 50W-X8 in MeOH, afforded the 2α -hydroxy-3-keto compound (<u>2b</u>)⁷; mp 153-154° (Et₂O); M⁺ 292; ir (KBr) 1725 cm⁻¹; nmr (CDCl₃) 4.2 (J7, 12, 1H, C<u>H</u>OH) 3.7 ppm (m, 1H, CHOH).¹¹

<u>Conclusion</u>. We suggest that iodosobenzene when reacted with 17β -hydroxy- 5α -androstan-3-one (<u>la</u>) gives exclusively a 2α -adduct (<u>6</u>), as in the case of bromination.¹² The 17β -hydroxy- 5α -19-norandrostan-3-one (<u>lb</u>) with iodosobenzene affords mainly the 2β -adduct (<u>7</u>), because of less steric compression as a result of the smaller angular hydrogen, together with some 2α adduct.

The 2α -adduct as in the case of a 2α -bromo steroid⁶ undergoes a Favorski rearrangement by way of a <u>trans</u> <u>anti</u> planar displacement of the 2α -phenyl iodoso intermediate in the presence of methoxide ion whereas the 2β -adduct

undergoes the anticipated conversion to the intermediate 2α , 3α -epoxy- 3β methoxy structure which is further converted to the dimethyl ketal of the acyloin ($\underline{5}$) as suggested by Moriarty.²

Acknowledgements.

We want to thank Mr. Allan Hlavac and Dr. Stephen Clemans for assistance in interpretation of the physical data. We would also like to thank Dr. Robert Christiansen for useful discussion.

References.

- R.M. Moriarty, S.C. Gupta, H. Hu, D.R. Berenschot and K.B. White, J. Am. Chem. Soc., <u>103</u>, 686 (1981). R.M. Moriarty, H. Hu and S.C. Gupta, <u>Tetrahedron Lett.</u>, <u>22</u> (14) 1283 1.
- 2. (1981).
- R.M. Moriarty, L.S. John and P.C. Du, J.C.S. Chem. Comm. 641 (1981). 3.
- H. Saltzman and J.G. Sharefkin, Org. Syn., 43, 60 (1963).
 E. Caspi, Y. Shimizu and S.N. Balsabrahmanyam, <u>Tetrahedron</u>, 20, 1271 4.
- 5. (1964).
- D.E. Evans, A.C. DePaulet, C.W. Shoppee and F. Winternitz, J. Chem. 6. Soc., 1451 (1957).
- $\overline{\text{All}}$ elemental analysis were within ±0.4 of the calculated values. 7.
- 8. Probably a mixture of (3a) and (3b).
- Probably a mixture of $(\overline{4a})$ and $(\overline{4b})$. 9.
- E. Caspi, S.K. Malhotra, J. Shimizu, K. Maheshwari and M.J.Gasic, Tetra-10. hedron 22, 595 (1966).
- J.F. Templeton, H.T. Andrew-Cheung, C. Roger Sham, T.R. Watson and K. Ju, J. Chem. Soc. Perkins Trans I, 251, 1983. R. Villotti, H.J. Ringold and C. Djerassi, J. Am. Chem. Soc., 82, 5693 11.
- 12. (1960).

(Received in USA 11 June 1984)